top of page

Meningeal lymphatic drainage: novel insights into central nervous system disease


저자명

Qiang Zhang, Yin Niu, Yingpei Li, Chenyang Xia, Zhi Chen, Yujie Chen & Hua Feng

출처 및 게재(발행일)

Sig Transduct Target Ther 10, 142 (2025).

DOI

Abstract (영문)

In recent years, increasing evidence has suggested that meningeal lymphatic drainage plays a significant role in central nervous system (CNS) diseases. Studies have indicated that CNS diseases and conditions associated with meningeal lymphatic drainage dysfunction include neurodegenerative diseases, stroke, infections, traumatic brain injury, tumors, functional cranial disorders, and hydrocephalus. However, the understanding of the regulatory and damage mechanisms of meningeal lymphatics under physiological and pathological conditions is currently limited. Given the importance of a profound understanding of the interplay between meningeal lymphatic drainage and CNS diseases, this review covers seven key aspects: the development and structure of meningeal lymphatic vessels, methods for observing meningeal lymphatics, the function of meningeal lymphatics, the molecular mechanisms of meningeal lymphatic injury, the relationships between meningeal lymphatic vessels and CNS diseases, potential regulatory mechanisms of meningeal lymphatics, and conclusions and outstanding questions. We will explore the relationship between the development, structure, and function of meningeal lymphatics, review current methods for observing meningeal lymphatic vessels in both animal models and humans, and identify unresolved key points in meningeal lymphatic research. The aim of this review is to provide new directions for future research and therapeutic strategies targeting meningeal lymphatics by critically analyzing recent advancements in the field, identifying gaps in current knowledge, and proposing innovative approaches to address these gaps.



한글 초록 요약

  • 최근 연구에 따르면 뇌수막 림프 배액(meningeal lymphatic drainage)이 중추신경계(CNS) 질환에서 중요한 역할을 한다는 증거가 증가하고 있음. 최근 연구들은 뇌수막 림프 배액 장애와 관련된 CNS 질환 및 상태로 신경퇴행성 질환, 뇌졸중, 감염, 외상성 뇌손상(TBI), 종양, 기능성 뇌질환, 수두증 등을 제시하고 있음. 그러나 생리적 및 병리적 조건에서 뇌수막 림프관의 조절 메커니즘과 손상 메커니즘에 대한 이해는 여전히 제한적임.

  • 뇌수막 림프 배액과 CNS 질환 간의 상호작용을 깊이 이해하는 것이 중요하다는 점에서, 본 리뷰는 뇌수막 림프관의 발달 및 구조, 뇌수막 림프관을 관찰하는 방법, 뇌수막 림프관의 기능, 뇌수막 림프관 손상의 분자적 메커니즘, 뇌수막 림프관과 CNS 질환 간의 관계, 뇌수막 림프관의 잠재적 조절 메커니즘, 결론 에 대해 언급함.

  • 이 리뷰에서는 뇌수막 림프관의 발달, 구조, 기능 간의 관계를 탐구하고, 동물 모델과 인간을 대상으로 한 뇌수막 림프관 관찰의 최신 방법을 검토하며, 뇌수막 림프관 연구의 미해결 핵심 문제를 확인함.이 논문은 새로운 접근법을 제안함으로써 뇌수막 림프관을 타겟으로 하는 미래 연구와 치료 전략에 새로운 방향을 제시하는 것임.


논문 요약

1. 서론 (Introduction)

중추신경계(CNS)에는 두 가지 순환계가 있음 (혈액 순환계와 림프 순환계)

림프 순환계는 체액 균형 유지와 면역 보호에 중요한 역할을 함.

과거에는 CNS에 림프계가 없다고 여겨졌지만, 최근 연구는 뇌수막 림프관(mLVs)의 존재와 그 역할에 관해 연구됨.

mLVs의 주요 역할은 뇌척수액(CSF) 배액과 대사 부산물 제거로, 신경퇴행성 질환, 외상성 뇌손상(TBI), 뇌졸중, 감염, 종양, 수두증과 밀접하게 관련되어 있음.

     

2. 뇌수막 림프관의 발달과 구조 (Development, Structure, and Distribution of mLVs)

1) 발달 (Development)

뇌수막 림프관은 출생 후 두개골 기저부에서 형성되며, VEGF-C와 VEGFR3 경로에 의해 조절됨.

VEGF-D의 부재는 mLV 형성에 영향을 미치지 않지만, VEGF-C 결핍은 뇌수막 림프관의 퇴행을 유발함.

2) 구조와 분포 (Structure and Distribution)

뇌수막 림프관은 두개골 상부와 기저부에 위치하며, 구조적으로 두 가지 형태로 나뉨.

등쪽 mLVs (Dorsal mLVs): 주로 연속적 지퍼 형태의 접합을 가지며, 성숙하지 않은 구조임.

기저 mLVs (Basal mLVs): 버튼 모양의 접합을 가지며, CSF 배액에 유리한 구조

이외에도 사골 mLVs, 비인두 림프관총(NPLP), 경막 림프관 등이 존재

     

3. 뇌수막 림프관 관찰 방법 (Methods for Observing the Meningeal Lymphatic System)

인체 림프관 관찰법

MRI 기반 영상법: T2-FLAIR, T1 가중 영상 이용.

근적외선(NIR) 영상법: 비침습적 관찰 가능.

.동물 모델 관찰법

생체 관찰법: 2광자 현미경, 경두개 현미경, 광음향 현미경.

생체 외 관찰법: 전자 현미경, 조직 절편 염색법, 3DISCO 기법.

실험 동물로 주로 형질전환 마우스를 사용하여 비침습적 관찰 연구를 수행

     

4. 뇌수막 림프관의 기능 (Functions of mLVs)

CSF 배액 경로: mLVs는 두개골 기저부의 경부 림프절로 CSF를 배출하여 대사 부산물과 노폐물을 제거, 베타 아밀로이드(Aβ), 타우 단백질, α-시누클레인 등 신경퇴행성 질환과 관련된 물질을 제거

면역 조절: 뇌수막 림프관은 면역 세포(DC, B세포, T세포, 호중구 등)의 이동 경로로 작용하여, 신경염증과 면역 반응을 조절하고, 특히 중추와 말초 면역계를 연결하여 면역 세포가 CNS로 이동하는 것을 도움.

     

5. 뇌수막 림프관 손상의 분자 메커니즘 (Molecular Mechanisms of mLV Injury)

VEGFC-VEGFR3 경로: 림프관 신생 및 유지에 핵심 역할.

Piezo1 경로: 기계적 자극에 반응하여 림프 배액 조절.

ERK1/2 경로: 염증 반응 조절.

NO 경로: 혈관 확장 및 림프 배액 조절.

CGRP-CLR/RAMP 경로: 신경 염증 조절

     

6. 뇌수막 림프관과 중추신경계 질환 (mLVs and CNS Diseases)

신경퇴행성 질환:알츠하이머병과 파킨슨병에서 뇌수막 림프 배액 기능이 저하되면, Aβ, 타우, α-시누클레인 축적이 증가.

특히 파킨슨병 모델에서 mLV 기능 저하가 α-시누클레인 축적을 가속화함.

외상성 뇌손상 (TBI):외상 후 뇌부종 발생 시 뇌수막 림프 배액 기능 저하가 관찰. 두개골 기저부 림프관이 손상되면 CSF 배액 장애로 이어져 뇌내압이 상승

수두증: IVH 후 mLV 기능 저하는 뇌실 내 출혈성 수두증의 발생 위험을 증가.

     

7. 결론

뇌수막 림프관의 기능과 질환과의 관계를 밝히기 위한 연구가 지속되고 있으며, 특히 비침습적 관찰 기법의 발전이 중요.

향후 연구는 mLV와 질환 간의 인과관계를 명확히 하고, 치료 표적으로서의 가능성을 탐구할 필요성이 있음.



a A timeline of key breakthroughs and milestone events in the research history of meningeal lymphatic vessels and meningeal lymphatic drainage (1628: Gaspare Aselli made the initial discovery of the lymphatic system4; 1787: Giovanni Paolo Mascagni meticulously documented human dura mater’s mLVs6; 2012: Lliff. et al. made the initial discovery of the glymphatic system14; 2015: groundbreaking research by Dr. Alitalo’s16 and Dr. Kipnis’s teams17 independently demonstrated that mLVs are capable of draining CSF and clearing macromolecules. 2017: Absinta et al. initially discovered mLVs in humans and nonhuman primates86; 2019: Ahn et al. discovered that basal mLVs are more suitable for draining CSF than dorsal mLVs78; 2022: Jacob et al. discovered that CAV mLVs connect the Glymphatic system80;2024: Yoon et al. identified the NPLP as a key site for CSF drainage.82). b CSF circulation. ① Schematic diagram of the structure of the choroid plexus, with red arrows indicating CSF secretion and blue arrows indicating the pathways of CSF absorption. ② Relationships between the brain parenchyma, subarachnoid space, and venous sinuses, with red arrows indicating CSF secretion and blue arrows indicating the pathways of CSF absorption. ③ Perineural space, with blue arrows indicating the pathways of CSF absorption. ④ Schematic diagram of the microstructure of dCLNs, with blue arrows indicating the absorption of CSF. (Created with BioRender.com)
a A timeline of key breakthroughs and milestone events in the research history of meningeal lymphatic vessels and meningeal lymphatic drainage (1628: Gaspare Aselli made the initial discovery of the lymphatic system4; 1787: Giovanni Paolo Mascagni meticulously documented human dura mater’s mLVs6; 2012: Lliff. et al. made the initial discovery of the glymphatic system14; 2015: groundbreaking research by Dr. Alitalo’s16 and Dr. Kipnis’s teams17 independently demonstrated that mLVs are capable of draining CSF and clearing macromolecules. 2017: Absinta et al. initially discovered mLVs in humans and nonhuman primates86; 2019: Ahn et al. discovered that basal mLVs are more suitable for draining CSF than dorsal mLVs78; 2022: Jacob et al. discovered that CAV mLVs connect the Glymphatic system80;2024: Yoon et al. identified the NPLP as a key site for CSF drainage.82). b CSF circulation. ① Schematic diagram of the structure of the choroid plexus, with red arrows indicating CSF secretion and blue arrows indicating the pathways of CSF absorption. ② Relationships between the brain parenchyma, subarachnoid space, and venous sinuses, with red arrows indicating CSF secretion and blue arrows indicating the pathways of CSF absorption. ③ Perineural space, with blue arrows indicating the pathways of CSF absorption. ④ Schematic diagram of the microstructure of dCLNs, with blue arrows indicating the absorption of CSF. (Created with BioRender.com)


Molecular pathways involved in the mechanism of mLV injury. a CCBE1 is involved in the processing of VEGFC, which is essential for the initial steps of lymphangiogenesis. The absence of CCBE1 and VEGFC leads to impaired development and dysfunction of meningeal lymphatic vessels. b FOXC2 is one of the main promoters of lymphatic valve development, while the forkhead transcription factor FOXO1 acts as an inhibitor of lymphatic valve formation and maintenance in LECs. Elevated FOXO1 is associated with reduced FOXC2, and Akt-mediated phosphorylation leads to FOXO1 inactivation, thereby facilitating lymphatic valve formation. c Piezo1 controls mLV drainage through two main mechanisms: it enhances the expression of Foxc2 and augments interstitial flow and functional drainage by facilitating VEGF-C expression, VEGFR3 activation, and lymphatic endothelial cell proliferation via integrin-mediated interactions with the extracellular matrix. d ERK1/2 signaling has been established as a participant in lymphangiogenesis, where EGFR dephosphorylation mediates the subsequent dephosphorylation of MEK1/2 and ERK1/2. This dephosphorylation of ERK1/2 may lead to a reduction in VEGFR3 and connexin expression, resulting in discontinuation of basal mLVs and impaired mLV drainage.47 e CGRP-triggered CLR signaling pathway activation led to the reorganization of LEC junctional and gap proteins, culminating in impaired lymphatic drainage function. f CcO-activated through PBM augments mitochondrial respiration and ATP synthesis efficiency in LECs, fostering enhanced cellular vitality and facilitating functional repair.  Concurrently, CCO-induced NO production promotes ATP generation and is associated with ROS signaling pathways. g NO acts as a vasodilator by stimulating soluble guanylate cyclase, elevating cyclic-GMP, which activates protein kinase G, opens Ca2+-activated K+ channels, and promotes Ca2+ reuptake, inhibiting myosin light-chain kinase activity, and inducing lymphatic vessel relaxation. h CX3CR1 mediates leukocyte recruitment to form lymphatic thrombi post-IVH, leading to LEC injury and malfunction of mLVs.46 (a–h: Created with BioRender.com)
Molecular pathways involved in the mechanism of mLV injury. a CCBE1 is involved in the processing of VEGFC, which is essential for the initial steps of lymphangiogenesis. The absence of CCBE1 and VEGFC leads to impaired development and dysfunction of meningeal lymphatic vessels. b FOXC2 is one of the main promoters of lymphatic valve development, while the forkhead transcription factor FOXO1 acts as an inhibitor of lymphatic valve formation and maintenance in LECs. Elevated FOXO1 is associated with reduced FOXC2, and Akt-mediated phosphorylation leads to FOXO1 inactivation, thereby facilitating lymphatic valve formation. c Piezo1 controls mLV drainage through two main mechanisms: it enhances the expression of Foxc2 and augments interstitial flow and functional drainage by facilitating VEGF-C expression, VEGFR3 activation, and lymphatic endothelial cell proliferation via integrin-mediated interactions with the extracellular matrix. d ERK1/2 signaling has been established as a participant in lymphangiogenesis, where EGFR dephosphorylation mediates the subsequent dephosphorylation of MEK1/2 and ERK1/2. This dephosphorylation of ERK1/2 may lead to a reduction in VEGFR3 and connexin expression, resulting in discontinuation of basal mLVs and impaired mLV drainage.47 e CGRP-triggered CLR signaling pathway activation led to the reorganization of LEC junctional and gap proteins, culminating in impaired lymphatic drainage function. f CcO-activated through PBM augments mitochondrial respiration and ATP synthesis efficiency in LECs, fostering enhanced cellular vitality and facilitating functional repair. Concurrently, CCO-induced NO production promotes ATP generation and is associated with ROS signaling pathways. g NO acts as a vasodilator by stimulating soluble guanylate cyclase, elevating cyclic-GMP, which activates protein kinase G, opens Ca2+-activated K+ channels, and promotes Ca2+ reuptake, inhibiting myosin light-chain kinase activity, and inducing lymphatic vessel relaxation. h CX3CR1 mediates leukocyte recruitment to form lymphatic thrombi post-IVH, leading to LEC injury and malfunction of mLVs.46 (ah: Created with BioRender.com)



Comments


AMC NS LAB
서울아산병원 신경외과 중환자실, 신경외과연구실, NSICU
© 2024 by NSLAB Hanwool Jeon, Hayeong Kang

Section of Neurocritical Care

3.JPG
화면 캡처 2024-10-14 183847.png
화면 캡처 2024-10-14 183511.png
화면 캡처 2024-10-14 183557.png
bottom of page